CubeSail Displaced Orbit Design for Near Earth Object Observation
Yang Yang,
Xiaokui Yue,
Yong Li,
Andrew G. Dempster,
Chris. Rizos
Issue:
Volume 2, Issue 1, February 2015
Pages:
1-5
Received:
27 March 2015
Accepted:
31 March 2015
Published:
18 April 2015
Abstract: Microsatellites known as “CubeSats” have recently been developed to enable comparatively inexpensive and timely access to space for small payloads. As a new standard for small satellites, the CubeSat has shown great promise for space applications such as earth observation, planetary science and space physics mission. In this paper a “CubeSail” mission – a CubeSat deployed with a solar sail –for near earth object (NEO) observation is introduced. It is important to observe a NEO which may intersect or pass close to earth space before instigating any procedure for hazard avoidance. Furthermore, close observation of NEO may also be important for exploiting the new resources and exploring new living environment in outer space. This paper describes the concept of a large numbers of CubeSails deployed in the vicinity of the NEO for observation purposes. The dynamic model of the NEO-centreddis placed orbit in space is analysed. The solar radiation pressure on the sail can be utilised as propulsion to compensate for third body gravitational perturbation. To maintain the relative motion/position between a CubeSail and the NEO, periodic initial conditions are searched, which also must satisfy some observation mission constraints. A simulation study is carried out using the near earth asteroid Apophis 99942, discovered in recent years.
Abstract: Microsatellites known as “CubeSats” have recently been developed to enable comparatively inexpensive and timely access to space for small payloads. As a new standard for small satellites, the CubeSat has shown great promise for space applications such as earth observation, planetary science and space physics mission. In this paper a “CubeSail” miss...
Show More