Volume 5, Issue 1, June 2018, Page: 9-15
Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited
Meysam Toozandehjani, Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Malaysia
Nuruldiyanah Kamarudin, Department of Chemical Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
Zahra Dashtizadeh, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang, Malaysia
E. Yee Lim, Department of Forest Production, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia
Ashen Gomes, Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
Chandima Gomes, Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
Received: Jan. 10, 2018;       Accepted: Jan. 26, 2018;       Published: Feb. 11, 2018
DOI: 10.11648/j.ajae.20180501.12      View  1592      Downloads  155
Abstract
Composites as a separate class of engineering material have found many applications in aerospace industries where high performance and safety are a prime concern. A review has been done in order to provide a comprehensive analysis on various types of composites used in the aerospace industry, emphasizing on the features, properties, advantages, limitations, and emerging trends in the field.
Keywords
Aerospace, Composite Materials, Polymer Matrix Composites (PMCs), Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs)
To cite this article
Meysam Toozandehjani, Nuruldiyanah Kamarudin, Zahra Dashtizadeh, E. Yee Lim, Ashen Gomes, Chandima Gomes, Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited, American Journal of Aerospace Engineering. Vol. 5, No. 1, 2018, pp. 9-15. doi: 10.11648/j.ajae.20180501.12
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
F. C. Campbell, “Manufacturing Processes for Advanced Composites”, Elsevier, Oxford, 2003, pp: 1–2.
[2]
W. F. Smith, “Principles of Material Science and Engineering”, McGraw- Hill, New York, 2nd ed, 1990.
[3]
M. R. Kessler, “Polymer matrix composites: A perspective for a special issue of polymer reviews. Polymer Reviews”, 52 (3), 2012, pp: 229-233.
[4]
R. Komanduri, B. Zhang, C. M. Vissa, “Machining of fiber reinforced composites Machining Science and Technology”, (1991), 1 (1), pp: 113-152.
[5]
W. D. Callister, “Fundamentals of materials science and engineering: an interactive e. text”, Vol. 5. New York: Wiley, 2001.
[6]
S. Chauhan, R. K. Bhushan, Study of Polymer Matrix Composite with Natural Particulate/Fiber in PMC: A Review, International Journal for Advance Research, Ideas and Innovations in Technology, Vol 3, Issue 3, V3I3-1467, 2017.
[7]
U.S. Congress, Office of Technology Assessment, “Advanced Materials by Design”, OTAE-351 Washington, DC: U.S. Government Printing Office, 1988.
[8]
R. Wang, S. Zheng, Y. George, “Polymer Matrix Composites and Technology”, Woodhead Publishing, 2011, pp. 1-26.
[9]
D. A. Jesson, J. F Watts, “The interface and interphase in polymer matrix composites: Effect on mechanical properties and methods for identification Polymer Reviews”, 52 (3), 2012, pp: 321-354.
[10]
M. K. Gupta, R. K. Srivastava, “Mechanical Properties of Hybrid Fibers Reinforced Polymer Composite: A Review”, Journal of Polymer-Plastics Technology and Engineering, 2015.
[11]
M. R. Kessler, “Polymer matrix composites: A perspective for a special issue of polymer reviews”, Polymer Reviews, 52 (3), 2012, pp: 229-233.
[12]
J. Jansons, V. Kulakov, A. Aniskevich, A. Lagzdiņš, ”Structural Composites − From Aerospace to Civil Engineering Applications”, Innovations and Technologies News 4 (17), 2012, pp: 3-12.
[13]
G. Lubin, “Handbook of Composites”, Chapman & Hall, 1st ed, 1998.
[14]
R. Selvam, S. Ravi, R. Raja, Fabrication of SiC particulate reinforced polyester matrix composite and investigation, Materials Science and Engineering 197 (2017) 012052 doi:10.1088/1757-899X/197/1/012052.
[15]
C. Zweben, Polymer Matrix Composites, chapter 12 in “Frontiers in Materials Technologies”, M. A. Meyers and O. T. Inal, Elsevier Science, 1985, pp: 365.
[16]
V. K. Thakur, M. K. Thakur, R. K. Gupta, “Review: raw natural fiber–based polymer composites” International Journal of Polymer Analysis and Characterization, 19 (3), 2014, pp: 256-271.
[17]
R. M. Jones, “Mechanics of Composite Materials”, Taylor & Francis, 2nd ed, 1999.
[18]
Composites World,” Aerospace Composites: A Design and Manufacturing Guide”, Gardner Publications Inc. U.S., 2008.
[19]
D. Zenkert, “An introduction to sandwich construction”, Engineering materials advisory services, Emas Publishing, London, 1997, pp:53.
[20]
B. S. Hayes, L. M. Gammon, Optical Microscopy of Fiber-Reinforced Composites”, ASM international, 2010.
[21]
S. Huang, L. Zhou, M. C. Li, Q. Wu, Y. Kojima and D. Zhou, “Preparation and Properties of ElectrospunPoly (Vinyl Pyrrolidone) / Cellulose Nanocrystal / Silver Nanoparticle Composite Fibers Materials, 2016, 9, 523.
[22]
G. Bastos, F. Patiño-Barbeito, F. Patiño-Cambeiro and J. Armesto “Nano-Inclusions Applied in Cement-Matrix Composites” Materials, 9, 1015, (2016)
[23]
Y. Liu, S. Kumar, “Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers, Polymer Reviews”, 52 (3), 2012, pp: 234-258.
[24]
G. Pandey, E. T. Thostenson, “Carbon nanotube-based multifunctional polymer nanocomposites”, Polymer Reviews, 52 (3), 2012, pp: 355-416.
[25]
M. A. Fuqua, S. Huo, C. A. Ulven, “Natural fiber reinforced composites”, Polymer Reviews, 52 (3), 2012, pp: 259-320.
[26]
E. Rudnik, N. Milanov, G. Matuschek, A. Kettrup, “Ecotoxicity of biocomposites based on renewable feedstock–Preliminary studies”, Chemosphere, 70 (2), 2007, pp: 337-340.
[27]
A. K. Mohanty, M. Misra, L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: an overview”, Composite Interfaces, 8 (5), 2001, pp: 313-343.
[28]
G. B. V. Kumar and R. Pramod, “Investigation of mechanical properties of aluminium reinforced glass fibre polymer composites”, AIP Conference Proceedings 1859, 020084 2017; https://doi.org/10.1063/1.4990237.
[29]
O. S. Salih, H. Ou, W. Sun, D. G. McCartney, “A review of friction stir welding of aluminium matrix composites”, Materials & Design, 86, 2015, pp: 61-71.
[30]
T. Prater, “Friction stir welding of metal matrix composites for use in aerospace structures”, Acta Astronautica, 93, 2014, pp: 366-373.
[31]
K. K. Chawla, “The high-temperature application of ceramic-matrix composites”, Journal of Minerals, Metals & Materials Society (TMS), 47 (12), 1995, pp: 19-21.
[32]
B. McWilliams, J. Yu, M. Pankow, C. F. Yen, “Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites” International Journal of Impact Engineering, 86, 2015, pp: 57-66.
[33]
X. Tan, J. Wang, Y. Xu, R. Curran, S. Raghunathan, D. Gore, J. Doherty, “Cost-Efficient Materials in Aerospace: Composite vs Aluminium”, In Collaborative Product and Service Life Cycle Management for a Sustainable World, 2008, pp. 259-266.
[34]
L. H. Manjunatha, P. Dinesh, “Novel Technique for Fabrication of Aluminum 6061-MWCNT (Multi-Walled Carbon Nano Tube) Metal Matrix Composites”, ARPN Journal of Engineering and Applied Sciences, Vol. 8, No. 3, March 2013.
[35]
D. K. Koli, G. Agnihotri, R. Purohit, “Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields” Materials Today: Proceedings, 2 (4), 2015, pp: 3032-3041.
[36]
S. Khoramkhorshid, M. Alizadeh, A. H. Taghvaei, S. Scudino, “Microstructure and mechanical properties of Al-based metal matrix composites reinforced with Al 84 Gd 6 Ni 7 Co 3 glassy particles produced by accumulative roll bonding”, Materials & Design, 90, 2016, pp: 137-144.
[37]
J. M. Larsen, S. M. Russ, J. W. Jones, “An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications”, Metallurgical and Materials Transactions A, 26 (12), 1995, pp: 3211-3223.
[38]
M. Mrazova, “Advanced composite materials of the future in aerospace industry. INCAS Bulletin, 5 (3), 2013, pp: 139.
[39]
P. Sharma, S. Sharma, D. Khanduja, “A study on microstructure of aluminium matrix composites”, Journal of Asian Ceramic Societies, 3, 2015, pp: 240-244.
[40]
A. Mony, V. S. Vinila, R. Jacob, H. G. Nair, S. Issac, S. Rajan, J. Isac, “Thermal Behaviour of Nano Crystalline Ceramic PbSrBaTiO”, International Journal of Innovative Science, Engineering & Technology, 1 (10), 2014, pp: 645-649.
[41]
A. S. Nair, V. S. Vinila, S. Issac, R. Jacob, A. Mony, H. G. Nair, S. Rajan, D. J. Satheesh, J. Isac, “Studies on Nano Crystalline Ceramic Superconductor LaZrYBaCa2Cu3O11 at Three Different Temperatures”, Journal of Crystallization Process and Technology, 4, 2014, pp: 126-133.
[42]
A. S. Nair, J. Isac, “Studies on Thermal Behaviour of Nano Crystalline Ceramic LaZrYBaCa2Cu3O11”, Asian Journal of Science and Technology, 6 (9), 2015, pp: 1750-1754.
[43]
J. Philip, L. John, “Impact of Smart Materials in Aero Industry. International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies (ICCOMIM), 2012, pp: 440-446.
[44]
M. F Ashby, D. Cebon, “Materials selection in mechanical design”, Le Journal de Physique IV, 3 (C7), C7-1, 1993.
[45]
S. Kumar, K. M. Reddy, A. Kumar, G. R. Devi, “Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application”, Aerospace Science and Technology, 26 (1), 2013, pp: 185-191.
[46]
A. Çelik, I. Lazoglu, A. Kara, F. Kara, “Wear on SiAlON Ceramic Tools in Drilling of Aerospace Grade CFRP Composites”, Wear, 338-339, 2015, pp: 11-21.
[47]
C. Jiménez, K. Mergia, M. Lagos, P. Yialouris, I. Agote, V. Liedtke, J. Barcena, “Joining of ceramic matrix composites to high temperature ceramics for thermal protection systems”, Journal of the European Ceramic Society, 2015.
[48]
A. S. Gohardani, O. Gohardani, “Ceramic engine considerations for future aerospace propulsion”, Aircraft Engineering and Aerospace Technology, 84 (2), 2012, pp: 75-86.
[49]
S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler, “Advanced ceramic matrix composite materials for current and future propulsion technology applications” Acta Astronautica, 55 (3), 2004, pp: 409-420.
[50]
R. Naslain, A. Guette, F. Rebillat, R. Pailler, F. Langlais, X. Bourrat, Boron-bearing species in ceramic matrix composites for long-term aerospace applications. Journal of Solid State Chemistry, 177 (2), 2004, pp. 449-456.
Browse journals by subject